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Chapter 1

Numbers and Sets

1 Introduction to number systems and logic

2 Sets, relations and functions

2.1 Union, intersection and equality of sets

2.2 Indicator functions

2.3 Functions

2.4 Relations and equivalence relations

2.5 The Inclusion-Exclusion Principle

3 The integers

3.1 Natural numbers

4 Elementary number theory

4.1 Prime numbers

Definition 1.1. For two integers a and b, a divides b if there exists an integer k such
that b = ak. We call a a factor of b and write a | b.

3



4 Numbers and Sets

Definition 1.2. A number p is prime if its divisors are only 1 and itself. A number
which is not prime is called a composite number.

Theorem 1.1. Every number greater than 1 has a prime factor.

Proof. We proceed by induction. Note that 2 obviously has a prime factor 2. Suppose that
every number less than m has a prime factor, we need to show that m also has a prime
factor.

If m is prime then we are done. If m is not, then there exists a, b ∈ N with a ≤ m
such that ab = m and a 6= 1. Then by the hypothesis, a has a prime factor. That prime
factor must also divide m. Thus every number greater than 1 has a prime factor.

This proof of infinitude of prime is first described by Euclid.

Theorem 1.2. There are infinitely many prime numbers.

Proof. Suppose there are only finitely many prime numbers, denoted p1, . . . , pk. Consider the
number obtained by multiplying all primes in the list, and then adding one; p1p2 · · · pk + 1.
This number is obviously greater than 1, and so it must have a prime factor q. It then
follows that q must be one of the finitely many primes in the list. But for all pi with
1 ≤ i ≤ k, pi - p1p2 · · · pk + 1. This means that q is not equal to any of the prime in the list,
a contradiction.



5 The real numbers 5

4.2 Euclid’s algorithm

4.3 Solution in integers of ax+ by = c.

4.4 Modular arithmetic

4.5 Chinese remainder theorem

4.6 Wilson’s theorem

5 The real numbers

5.1 Least upper bounds

5.2 Sequences and series

5.3 Irrationality of
√
2 and e

What does it mean for a number to be rational? Recalls the definition of a rational
number, which says that a number a is rational if it can be expressed in the form

a =
p

q

for relatively prime integers p, q with q 6= 0.
We start by the classic proof of irrationality of

√
2.

Theorem 1.3.
√
2 is irrational.

Proof. Suppose
√
2 is rational, and

√
2 = p

q
with (p, q) = 1 and q 6= 0. Then (

√
2)2 = 2 = p2

q2
,

so 2q2 = p2. Therefore 2 | p2; it follows that p is even. But then p = 2p0 for some integer
p0, which means that q2 = 2(p0)

2 and q is even. But this contradicts our assumption that p
and q are relatively prime.

More generally,

Theorem 1.4. √
p is irrational if p is prime.

Proof. We provide another proof using unique factorisation of integers. Assume that √
p is

a rational number, and that √
p = a

b
, with coprime a, b and b 6= 0. If b = 1, then p must

divide a2, then it divides a, which is absurd. Then there exists a prime q in the factorisation
of b such that q - a, or else they have a common factor.

Now consider 2 = a2

b2
. a2 is factored into the product of primes of a, but squared.

The prime factor of b2 includes q2. As so the fraction a2

b2
cannot be reduced to an integer,

contradicting 2 = a2

b2
.



6 Numbers and Sets

We can extend the result to the following theorem.

Theorem 1.5.
√

p
q

is rational if and only if p and q are perfect squares.

Even more generally,

Theorem 1.6. If an integer a is not an exact k-th power of another integer then k
√
a is

irrational.

We now provide a proof that e is irrational, starting with the definition of e.

Definition 1.3. The number e is defined as

e =

∞∑
n=0

1

n!
= lim

n→∞

(
1 +

1

n

)n

.

We will show later on that the two definition is indeed equal. The proof of irrationality of e
will use the fact that

e =

∞∑
n=0

1

n!
= 1 +

1

1!
+

1

2!
+

1

3!
+ · · · .

Note that 2 = 1 + 1 < e = 1 + 1
1!
+ 1

2!
+ 1

3!
+ · · · < 1 +

(
1 + 1

2
+ 1

22
+ 1

23
+ · · ·

)
= 3, that is e

is bounded between 2 and 3. Now we present the proof of irrationality of e, as presented by
Joseph Fourier.

Theorem 1.7. e is irrational.

Proof. Suppose e is rational and with usual condition (a, b) = 1, e = a
b
. Define

x = b!

(
e−

b∑
n=0

1

n!

)
. (1.1)

This renders x an integer, for if we substitute e = a
b
,

x = b!

(
a

b
−

b∑
n=0

1

n!

)
= a(b− 1)!−

b∑
n=0

b!

n!
.

For 0 ≤ n ≤ b, n! divides entirely into b!, and so the sum is an integer.
Notice that we are using an idea that the difference between the fast-converging series

expansion of e and
∑b

n=0
1
n!

multiplied by b! is still less than 1, thus making x an integer
between 0 and 1. This would give us a contradiction.



6 Countability and uncountability 7

Let’s bound the value of x first by showing that it is indeed positive, since

x = b!

(
e−

b∑
n=0

1

n!

)
= b!

(
∞∑
n=0

1

n!
−

b∑
n=0

1

n!

)
=

∞∑
n=b+1

b!

n!
, (1.2)

and all of its terms is positive, so x > 0.
Consider b!/n!. For all term n ≥ b+ 1,

b!

n!
=

1

(b+ 1)(b+ 2) · · · (b+ (n− b))
<

1

(b+ 1)n−b
.

The inequality is strict for n > b+ 1, we now have

x =
∞∑

n=b+1

b!

n!
<

∞∑
n=b+1

1

(b+ 1)n−b
=

∞∑
k=1

1

(b+ 1)k
=

1

b+ 1

(
1

1− 1
b+1

)
=

1

b
< 1. (1.3)

A contradiction.

Later in the 19th century, e is proven to be transcendental, i.e. e is not a root of any
polynomial with rational coefficient, by Charles Hermite. Furthermore, the result of the
Lindemann-Weierstrass theorem indicates that ea is transcendental if a is rational and non-
zero. The same theorem also shows that π is transcendental.

5.4 Decimal expansions

5.5 Construction of a transcendental number

6 Countability and uncountability
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Chapter 2

Groups

1 Examples of groups

1.1 Axioms for groups

Definition 2.1. A group is a set G, together with a binary operation ∗ on G with the
following properties.

1. (Closure) for all g and h in G, g ∗ h ∈ G;

2. (Associativity) for all f, g and h in G, g ∗ h ∈ G, f ∗ (g ∗ h) = (f ∗ g) ∗ h;

3. (Existence of identity) there is a unique e in G such that for all g in G, g ∗ e = g =
e ∗ g;

4. (Existence of inverse) if g ∈ G there is some h in G such that g ∗ h = e = h ∗ g.

These results follow nicely.

Lemma 2.1. Let G be any group. Then, given g ∈ G, there is only one element h such that
g ∗ h = e = h ∗ g. Particularly (g−1)−1 = g.

Lemma 2.2 (Cancellation law). Suppose that a, b and x are in a group G. If a ∗ x = b ∗ x
then a = b.

Lemma 2.3. Suppose that a and b are in a group G. Then the equation a ∗ x = b has a
unique solution x = a−1 ∗ b.

Lemma 2.4. In any group G, e is the unique solution of x ∗ x = x.

Notice that we do not include the familiar assumption that f ∗ g = g ∗ f normally
found in arithmetic. In fact, for some interesting groups this equality does not hold.

9
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Definition 2.2. Let G be a group with respect to ∗. The elements f and g commute if
f ∗ g = g ∗ f . We call G abelian if for all f and g in G, we have f ∗ g = g ∗ f .

We adopt the notation gh as equivalent to g ∗ h for simplicity.

1.2 Examples from geometry
In this section we examine the idea of group in geometry, using polygons.

1.3 Permutation on a set
In this section we will show that permutations of a non-empty set X, in fact, form a

group, starting with the definition of permutations acting on a set, although only for finite
sets, before developing the idea further into arbitrary sets.

Definition 2.3. A permutation α : X → X is a bijection from X to itself. We say that
α acts on the set X. The set of all permutations of X is denoted P(X).

This set is indeed a group.

Theorem 2.1. The set P(X) forms a group under composition of functions. We shall
write αβ(x) in place of α(β(x)).

Proof. We will show that all group axioms are satisfied.

1. It is obvious that if α, β are permutations, then αβ is also a permutation. Thus the
set P(X) is closed under composition.

2. For any permutations α, β, γ, let µ = αβ and ν = βγ. Then for every x in X,

(α(βγ))(x) = (αν)(x)

= α(ν(x))

= α(β(γ(x)))

= µ(γ(x))

= (µγ)(x)

= ((αβ)γ)(x).

(2.1)

Thus the permutations are associative under composition.

3. The identity permutation ι(x) = x is the identity of P(X), since αι(x) = α(x) = ια(x).

4. For any element α of X, the inverse is simply its functional inverse α−1. Direct verifi-
cation shows that αα−1 = ι = α−1α.
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The above proof lets us write αβγ for any composition of three or more permutations without
any confusion.

Setting X = {1, . . . , n}, the study of permutation groups is simpler. We shall give a
name for such group.

Definition 2.4. The symmetric group Sn is a set of permutations of {1, . . . , n}. We say
that the group is of degree n.

Theorem 2.2. The order of Sn is n!.

Proof. Evidently, there are n! permutations on a set with n elements.

We now introduce a customary notation for permutation ρ(x) in the form

ρ =

(
1 2 3 · · · n

ρ(1) ρ(2) ρ(3) · · · ρ(n)

)
,

which mean that the image of the permutation ρ(i) is underneath i in the first row. For
example, let α be a permutation on {1, 2, 3, 4} with α(1) = 1, α(2) = 4, α(3) = 2 and
α(4) = 3, then

α =

(
1 2 3 4
1 4 2 3

)
.

Example 2.1. There are 6 permutations in S3, they are(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)
.

Note that(
1 2 3
1 3 2

)(
1 2 3
2 1 3

)
=

(
1 2 3
3 1 2

)
6=
(
1 2 3
2 3 1

)
=

(
1 2 3
2 1 3

)(
1 2 3
1 3 2

)
.

Therefore S3 is not abelian. More generally Sn is not abelian for n ≥ 3. We will
study permutations in more details later on.

1.4 Subgroups and homomorphisms

Definition 2.5. A subgroup of a group G is a subset of G which itself form a group
under the operation taken from G.
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Theorem 2.3. Let H be a subgroup of G, then the identity element of H is that of G.

A group G always at least admits two subgroup, namely G and the singleton {e}.
We call {e} the trivial subgroup of G, and we say that H is the non-trivial subgroup of G if
H 6= {e}. We say that H is a proper subgroup of G if H 6= G.

We now give a test for a subset to be a subgroup.

Theorem 2.4 (A test for subgroup). Let G be a group, and H be a non-empty subset
of G. Then H is a subgroup of G if and only if

1. if g ∈ H and h ∈ H, then gh ∈ H, and

2. if g ∈ H then g−1 ∈ H.

Another test is similar and follows from the above theorem.

Theorem 2.5. Let G be a group, and H be a non-empty subset of G. Then H is a
subgroup of G if and only if xy−1 ∈ H whenever x, y ∈ H.

Example 2.2. The group (Z,+) is a subgroup of (R,+).

The following property of the class of subsets of G is important.

Theorem 2.6. Let G be any group, then the intersection of any collection of subgroups
of G is itself a subgroup of G.

Proof. Note that the intersection ∩tHt of the subgroups of G, defined as Ht for some t in the
index set T , is not empty. Then for every elements g ∈ ∩tHt and h ∈ ∩tHt, they also lie in
Ht for every t. And thus gh ∈ Ht, so gh ∈ ∩tHt. Any element g ∈ ∩tHt also has its inverse
in every subgroup Ht. It then follows that g−1 ∈ ∩tHt. Therefore ∩tHt forms a subgroup
under the operation of G.

As a consequence, we see that for any non-empty subset G0 of G, we can consider the
intersection of the collection of all subgroups H of G than contain G0. The collection is not
empty, since G is itself in the collection. It follows that the intersection is itself not empty,
and is a subgroup of G that contain G0. In fact, it is the smallest subgroup to contain G0.
This allows us to propose the next definition.

Definition 2.6. Let G0 be a non-empty subset of a group G. The subgroup of G
generated by G0 is the smallest subgroup of G that contains G0.
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The idea of subgroup is expanded into the notion of a coset, which will be explored
later.

Let’s now turn to homomorphism, as a tool to study relationship between two groups.

Definition 2.7. Let G,H be groups. A function ϕ : G → G′ is a homomorphism if it
takes the action of G to that of H, namely

ϕ(xy) = ϕ(x)ϕ(y),

for all x, y ∈ G.

Definition 2.8. A homomorphism ϕ is called an isomorphism if it is bijective.

Lemma 2.5. The homomorphism ϕ : G → H sends the identity of G to that of H.

Proof. Let x = y = eG. So ϕ(eG) = ϕ(eG)ϕ(eG). This equation is satisfied only when
ϕ(eG) = eH .

Lemma 2.6. ϕ(xy−1) = ϕ(x)ϕ(y)−1.

Proof. This is clear from the fact that ϕ(y)ϕ(xy−1) = ϕ(x).

Lemma 2.7. ϕ(x−1) = ϕ(x)−1.

Lemma 2.8. If ϕ : G → H and θ : H → K are homomorphisms, then θϕ : G → K is also a
homomorphism. Similarly, if ϕ : G → H and θ : H → K are isomorphisms, then θϕ : G → K
is an isomorphism.

The idea of kernel, introduced for vector spaces, motivates us to find an analogy for homo-
morphisms between groups. As the kernel of a linear map is the set of vectors mapped to
the identity elements of the image spaces, we naturally define kernel as follows.

Definition 2.9. The kernel kerϕ of a homomorphism ϕ : G → H is the set of elements
of g mapped to the identity of H, that is,

{g ∈ G : ϕ(g) = eH}.

Theorem 2.7. Let ϕ : G → H. Then kerϕ is a subgroup of G.

This result is similar to those of kernels of vector spaces.
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1.5 Symmetry groups

2 The Möbius group

We first begin with the definition of Möbius transformations.

Definition 2.10. A Möbius transformation is a function f of a complex variable z in
the form

f(z) =
az + b

cz + d
,

for some complex numbers a, b, c and d, with the condition that ad− bc 6= 0.

The condition ad− bc 6= 0 might not be obvious, but it follows from the fact that

f(z)− f(w) =
(ad− bc)(z − w)

(cz + d)(cw + d)
.

If ad− bc = 0, then f is constant. This also shows that f is injective.
This definition of the Möbius transformation has two problems. First, a Möbius

transformation f is not unique. As for example, the 4-tuples (a, b, c, d) and (ma,mb,mc,md)
with m 6= 0 will all map a complex number z to a same number. Thus, given f , we cannot
say what are the coefficients.

The second problem stems from the fact that, for example 1/(z−z0) is not defined at
the point z0. This means that there is no subset of C on which all Möbius maps are defined.

Here is an example of this.

Example 2.3. Let f(z) = (z + 2)/z and g(z) = (z + 1)/(z − 1). Then,

f(g(z)) =
g(z) + 2

g(z)
=

(z + 1) + 2(z − 1)

z + 1
=

3z − 1

z + 1
,

so that fg fixes the point 1. However, g is not defined when z = 1. What’s worse is that,
if h(z) = 1/z then hfg(z) = (z + 1)/(3z − 1), although g is not defined when z = 1, fg(z)
is not defined when z = −1, and hfg(z) is not defined when z = 1/3. More generally, a
composition f1 · · · fn of Möbius maps will not be defined at n distinct points in the complex
plane.

The following theorem addresses the first problem.
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Theorem 2.8. Suppose that a, b, c, d, α, β, γ and δ are complex numbers with (ad− bc)(αδ − βγ)6= 0,
and such that for at least three distinct values of z in C, cz + d 6= 0, γz + δ 6= 0, and

az + b

cz + d
=

αz + β

γz + δ
.

Then there is some non-zero complex number λ such that(
α β
γ δ

)
= λ

(
a b
c d

)
. (2.2)

Proof. Consider the quadratic polynomial

(az + b)(γz + δ) = (αz + β)(cz + d).

The polynomial has three distinct roots, and so it must be a zero polynomial. Therefore,
aγ = cα, bγ + aδ = cβ + dα and bδ = dβ, which is equivalent to(

d −b
−c a

)(
α β
γ δ

)
=

(
µ 0
0 µ

)
,

where µ2 = (ad− bc)(αδ − βγ) 6= 0. We then have(
α β
γ δ

)
=

µ

ad− bc

(
a b
c d

)
.

The first problem is then resolved by showing that the 4-tuple (a, b, c, d) determines f , up
to non-zero multiple. The second problem will be resolved differently, by joining an extra
point, which is called the point at infinity to C. This point is denoted ∞.

Definition 2.11. The set of complex numbers joined with the set {∞} of the point at
infinity is called an extended complex plane, and is denoted C∞.

We already have our notion of the Möbius map approaching infinity, since we have

lim
z→∞

az + b

cz + d
=

a

c
, lim

z→−d/c

az + b

cz + d
= ∞

when c 6= 0. And if c = 0 then limz→∞ f(z) = ∞. So we naturally use them to assign value
to f(∞).

Definition 2.12. For c 6= 0, define f(∞) = a/c and f(−d/c) = ∞. If c = 0 then
f(∞) = ∞.
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This assignment of values is well-defined only because we have shown before that either c 6= 0
or c = 0, and if c 6= 0 then the value of a/c and −d/c is always the same for any multiple of
c. The main result of this definition is that, all Möbius transformations are now defined on
the set C∞ so that the composition of any two Möbius maps is defined. In fact,

Theorem 2.9. Every Möbius map is a bijection from C∞ onto itself, and that they
form the Möbius group M with respect to composition.

Theorem 2.10. Every Möbius map transformation can be expressed as the composition
of at most four maps, which are

1. rotation and dilation of the form z 7→ az,

2. translation of the form z 7→ z + b; and

3. complex inversion of the form z 7→ 1/z.

There is a connection between Möbius maps and 2 × 2 complex matrices. We have
seen that, if M is a non-singular 2 × 2 matrix with complex entries, then we can find a
corresponding Möbius map f . Indeed this mapping, explicitly stated

ϕ :

(
a b
c d

)
7→ f, f(z) =

az + b

cz + d
,

gives us a homomorphism between the group of 2×2 non-singular complex matrices GL(2,C)
and M.

Theorem 2.11. The mapping ϕ is a homomorphism from the group GL(2,C) onto the
Möbius group M.

Lemma 2.9. The kernel of ϕ is {λI : λ ∈ C}. where I is the identity matrix.
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2.1 Fixed points and uniqueness

2.2 Cross-ratios

2.3 Preservation of circles

2.4 Conjugation

2.5 Fixed points of Möbius maps and iteration

3 Lagrange’s theorem

3.1 Cosets
We have introduced the idea of subgroup in the previous section. Now we come to

the idea of constructing a subset of any group G from its subgroup. For example, we could
define a new subset XY of G by

XY = {xy : x ∈ X, y ∈ Y }

for any subgroup X,Y of G. If X is a singleton, that is X = {x}, we shall adopt a notation
XY = xY . Such constructions which we shall consider are of the form

gH = {gh : h ∈ H} or Hg = {hg : h ∈ H}

for some g ∈ G, and H is a subgroup of G. The set gH is called the left coset of H with
respect to g, similarly, Hg is the right coset of H with respect to g. Some constructions of
this type might turn out to be the same set H. This is illustrated below.

Theorem 2.12. Let H be a subgroup of G, and g ∈ G. Then g ∈ H if and only if
gH = H (or Hg = H).

Thus we concern ourselves to the study of gH when g /∈ H. We will adopt an additive
notation g+H in place of gH when such subgroups employ addition. The next results show
that a group can be divided into disjoint cosets. This is called the coset decomposition of G.

Theorem 2.13. Let H be a subgroup of a group G, then G is a union of its left (or
right) cosets.

Proof. Clearly, for any g ∈ G, g ∈ gH. So g is contained in the union.
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Theorem 2.14. Let H be a subgroup of a group G, then any two left cosets of G are
either equal or disjoint.

Proof. Let f, g ∈ G and fH, gH are the two left cosets. Suppose that fH and gH are
disjoint, that is, the set fH ∩ gH is not empty. Then there exists an element x ∈ fH ∩ gH,
and so fy1 = gy2 for some y1, y2 ∈ H. Thus g−1f = y2y

−1
1 ∈ H and so g−1fH = H; hence

gH = gg−1fH = fH, hereby proving the theorem.

Corollary 2.1. If fH = gH, then g−1f ∈ H.

3.2 Lagrange’s theorem
Recall the definition of an order of a group, denoted |G|. The next theorem shows

the connection between the orders of a group and its subgroup.

Theorem 2.15 (Lagrange’s theorem). Let H be a subgroup of a finite group G. Then
|H| divides G, and |G|/|H| is the number of distinct left (or right) cosets of H in G.

Proof. From the previous theorem we can write a group G as a union of the pairwise disjoint
coset left of H. Therefore G = g1H ∪ g2H ∪ · · · ∪ grH. Consequently,

|G| = |g1H|+ |g2H|+ · · ·+ |grH|.

It remains to show that |g1H| = |g2H| = · · · = |grH| = |H|. Notice that the map x 7→ gjx is
a bijection from H to gjH, and so |g1H| = |g2H| = · · · = |grH| = |H|. Therefore |G| = r|H|
and the results follow.

The corollaries of Lagrange’s theorem are as follows.

Corollary 2.2. Let g be an element of a finite group G. Then the order of g divides the
order of G.

Proof. Let d be the order of g. The subgroup H = {e, g, g1, . . . , gd−1} is a subgroup of order
d. By Lagrange’s Theorem, |H| | |G|.

Corollary 2.3. If the order of a group is prime, then it is cyclic.

Proof. Let G be a group with prime order p. Suppose x ∈ G, x 6= e and H = 〈x〉 be its
subgroup. Then |H| | |G|. Since |G| is prime, |H| must either be 1 or p. But H contains
both x and e, therefore |H| = p, that is H = G = 〈x〉 as claimed.

3.3 Group of small order (up to 8)
Now we use the result from Lagrange’s theorem to classify all groups with order less

than 8.
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3.4 Quaternions

3.5 Fermat-Euler theorem
In this section we shall show some applications of group theory in the study of arith-

metic, notably to prove Fermat’s theorem and Euler’s theorem using tools from group theory.
Recall the definition of Zn,

Zn = {0, 1, . . . , n− 1},
that is, the set of all remainders after any integer is divided by n. We are interested in the
group structure of Zn with respect to multiplication. A group axiom states that all elements
of Zn must have an inverse, that is, there exists an element x of Zn such that

ax ≡ 1 (mod n)

for all a ∈ Zn. But not all integer n satisfied this.

Example 2.4. Consider 2 ∈ Z8. It does not has an inverse in Z8. Similary 4 and 6 all do
not has an inverse. But 3 · 3 ≡ 1 (mod 8) and 5 · 5 ≡ 1 (mod 8), and so they each have
inverses mod 8.

Such observation leads to an important result for general set Zn.

Theorem 2.16. An element a of a set Zn has an inverse if and only if it is coprime to
n.

Proof. Suppose that a has an inverse a′ in Zn, then it satisfies the equation

aa′ ≡ 1 (mod n).

Therefore there exists an integer k such that aa′ − 1 = kn. It follows from Bézout’s lemma
that (a, n) = 1.

Conversely, let (a, n) = 1, then there exists an integer k, l such that ak + nl = 1.
Thus ak ≡ 1 (mod n), and so a has an inverse in Zn.

Consequently, the set of all integers coprime to n forms a group under multiplication. We
shall denote them as Z/nZ, using the quotient notation. This motivates the following defi-
nition.

Definition 2.13. The numbers of positive integers up to n, and are also coprime to n
is equal to ϕ(n). This is called Euler’s totient function.

Corollary 2.4. The order of the group Z/nZ is equal to ϕ(n).

Lemma 2.10. For any prime p, we have ϕ(p) = p− 1.

Now we can prove Euler’s theorem using Lagrange’s theorem.
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Theorem 2.17 (Euler’s theorem). If a and n are coprime then

aϕ(n) ≡ 1 (mod n).

Proof. We have seen that the set Z/nZ forms a group and that |Z/nZ| = ϕ(n). Let d be the
order of a ∈ Z/nZ. Now the set {1, a, a2, . . . , ad−1} is a subgroup of Z/nZ. By Lagrange’s
theorem, d | ϕ(n). It then follows that aϕ(n) = adk ≡ 1 (mod n), as claimed.

The Fermat’s theorem is a direct result of Euler’s theorem.

Corollary 2.5 (Fermat’s theorem). For any prime p and any integer a,

ap ≡ a (mod p).

4 Group actions
This section studies group actions, which involves a ”product” between a group and

an arbitrary set X and returns an element of X. We refer to this by saying that G acts on
X.

A more precise formulation of the above can be given as following:

Definition 2.14. Let X be any set and G be any group, we say that G acts on X on
the left by the product ∗, if for each pair (g, x) with g ∈ G, x ∈ X, an element g ∗ x ∈ X
is defined, such that for all g, g′ ∈ G and all x ∈ X the following axioms hold:

1. e ∗ x = x, and,

2. g ∗ (g′ ∗ x) = (gg′) ∗ x.

An alternate formulation when G acts on X on the right can also be defined. Our study of
group action will rely on this notion and some geometric ideas in the study. Later on we
shall apply them to the study of the symmetry groups of regular solids.

Definition 2.15. Suppose that G acts on X. We say that x is a fixed point of g in G if
g ∗ x = x, and the set of fixed points of g is denoted by F(g).

Definition 2.16. Given x in X, the set {g ∈ G : g ∗ x = x} of elements of G that fix x
is called the stabilizer Gx of x.

This set is indeed a group.
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Theorem 2.18. The stabilizer Gx is a subgroup of G.

Definition 2.17. Suppose that G acts on X. Then the subset {g ∗ x : g ∈ G} of X is
called the orbit Ox of x under G. As we could see, it is the set of all images of x varying
g to every elements of G.

Definition 2.18. The action of G on X is called transitive if for each pair x, y in X
there exists a g in G such that g ∗ x = y.

Lemma 2.11. The group G acts transitively on X if and only if Ox = X for one x in X.

Note that any two orbits of two elements of X are either disjoint or equal. Thus the orbits
partition X into equivalence classes.

4.1 Orbit-stabilizer theorem
The most important result in the section is a variant of Lagrange’s theorem.

Theorem 2.19 (Orbit-stabilizer theorem). If a finite group G acts on a set X, then for
any x ∈ X the order of G is given by

|G| = |Ox||Gx|,

where Ox is the orbit of x under G and Gx is the stabilizer of x.

We present two proofs of the theorem, illustrating the power of cosets in group theory.

1st Proof. In this proof we let G acts on the left of X, the case when G acts on the right
can be argued similarly. We find, from Lagrange’s theorem, that |G|/|Gx| is the number of
distinct left cosets of Gx in G. It remain to show that, indeed, |Ox| is equal to |G|/|Gx|, by
finding a bijection between the two sets.

Let g be any element of G, and define θ(gGx) = g ∗x. Thus θ is surjective over Ox by
definition of Ox. Now if θ(gGx) = θ(hGx), then g ∗ x = h ∗ x which implies g−1h ∈ Gx, that
is g−1hGx = Gx, and so gGx = hGx. Thus θ is injective, and this proves the theorem.

2nd Proof. Take any x in X and let the orbit Ox of x be {g1 ∗ x, . . . , gr ∗ x}, with all of the
gi ∗ x are distinct. Consider the set giGx, the left coset of Gx with respect to gi. We will
show that the set giGx and gjGx is disjoint for i 6= j, and that G can be decomposed into
the union of left cosets of Gx with respect to the elements of Ox.
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Suppose giGx and gjGx share at least one element, i.e. giGx ∩ gjGx 6= ∅, therefore
gihi = gjhj for some hi, hj ∈ Gx. But then

(gihi) ∗ x = (gjhj) ∗ x
gi ∗ (hi ∗ x) = gj ∗ (hj ∗ x)

gi ∗ x = gj ∗ x,

implying i = j. Now let g be any element of G, we need to find gi such that g ∈ giGx. Let
g ∗ x = y, then y is in the orbit of x, and so there is one gi such that gi ∗ x = g ∗ x = y. But
then we have (g−1

i g) ∗ x = x, i.e. g−1
i g ∈ Gx, which implies gi(g

−1
i g) = g ∈ giGx, as claimed.

Thus we can write G as union of the left cosets of Gx as G = g1Gx ∪ · · · ∪ grGx, this
gives

|G| = |g1Gx|+ · · ·+ |grGx|.

The map h 7→ gih is obviously a bijection from Gx to giGx, and so |giGx| = |Gx|. Finally we
get

|G| = r|Gx| = |Ox||Gx|,

as needed.

The above proof gives an alluding idea for the following theorem, which shows that
the map g ∗ x = y can be written in terms of g and a map that either fixes x or y.

Theorem 2.20. Suppose that G acts on X and that g ∗ x = y, where x, y ∈ X and
g ∈ G. Then

gGx = {h ∈ G : h ∗ x = y} = Gyg.

The following theorem is an important result of orbit-stabilizer theorem in combina-
torics.

Theorem 2.21 (Burnside’s lemma). Let G be a finite group acting on a finite set X.
Then there are N orbits, where

N =
1

|G|
∑
g∈G

|F(g)| = 1

|G|
∑
x∈X

|Gx|.

In particular, N is the averge number of fixed points that an element of G has.

4.2 Cayley’s theorem
In this section we prove the result by Cayley, which show that, even abstract group

is indeed not so abstract.
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Theorem 2.22 (Cayley’s theorem). Every finite group is isomorphic to a subgroup of
a symmetric group

Proof. Let g be any element of a group G, and define the map λg : G → G by the rule
λg(a) = ga, for all a ∈ G. The map is surjective; take any element of h we have g−1h ∈ G
and so λg(g

−1h) = h. It is also injective; let λg(a) = λg(b), then ga = gb and so a = b. This
means that λn is bijective and thus a permutation of G. But also the set of all λg, ranging
g to all elements of G, themselves form a group, as the group axiom holds for λg as it holds
for G.

Define the map λ : G → P(G) from G to the set of permutations of G, by λ(g) = λg.
It is easy to see that λ is a homomorphism; for g, h ∈ G we have

λgh(a) = (gh)a = g(ha) = λg(ha) = λgλha,

this shows that λgh = λgλh, as it holds for all a ∈ G. Thus λ : G → P(G) is a homomorphism.
Finally consider the image Imλ of G under λ. It is a subgroup of P(G), precisely

since for λg, λh ∈ Imλ, we have λgλ
−1
h = λgλh−1 = λgh−1 ∈ Imλ. By definition of Imλ, λ is

an isomorphism from G to a subgroup Imλ of a symmetric group P(G).

This theorem holds even for infinite group, with extra care for cardinality of G. Another
proof of Cayley’s theorem will be given using isomorphism theorems.

Theorem 2.23. Any subgroup H of a group G is the stabilizer of some group action.

4.3 Conjugacy classes

In the previous section, we let G acts on itself in order to prove Cayley’s theorem.
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4.4 Cauchy’s theorem

5 Quotient groups

5.1 Normal subgroups

5.2 Quotient groups

5.3 The isomorphism theorem

6 Matrix groups

6.1 The general and special linear groups

6.2 The orthogonal and special orthogonal groups

6.3 Basis change

7 Permutations

7.1 Permutations, Cycles and Transpositions
We have given the definition of permutations before. More importantly, we have show

that, generally, Sn is not abelian, but some elements of Sn are.

Example 2.5. Let α, β ∈ S6, with

α =

(
1 2 3 4 5 6
5 2 1 4 3 6

)
, β =

(
1 2 3 4 5 6
1 6 3 4 5 2

)
.

Then
αβ =

(
1 2 3 4 5 6
5 6 1 4 3 2

)
= βα.

We shall now provide a sufficient condition for two permutations to commute.

Definition 2.19. Any permutations α, β are said to be disjoint if, for every k in
{1, 2, . . . , n}, either α(k) = k or β(k) = k.

Theorem 2.24. Two permutations commute if they are disjoint.
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Proof. Let the two permutations be α and β. For any k ∈ {1, . . . , n}, suppose that α fixes
k, the case for β can be argued similarly.

Let β(k) = k′. Then αβ(k) = α(k′) and βα(k) = β(k) = k′. We shall prove that
indeed α(k′) = k. Consider the following two possibility of β(k′).

If β(k′) 6= k′ then we are done by the premise. So suppose β(k′) = k′, but then
β(k′) = k′ = β(k). This implies k = k′ and so α(k′) = α(k) = k′ as required.

The conventional notation for permutations is unwieldy, especially for large n. We
shall further simplify it, by introducing fixed points.

Definition 2.20. We call that k is a fixed point of α, and that α fixes k, if α(k) = k.

And so, by convention, we shall left out any integers fixed by α. For example, the permutation

α =

(
1 3
3 1

)
interchanges 1 and 3, and fixes 2. This notation is still too cumbersome for large n, this
drives us to find a new notation. Let us start by noticing that, if we repeatedly apply any
permutation α to any elements in {1, 2, . . . , n}, it must eventually reappear after some finite
repetitions. For example, let

α =

(
1 2 3 4 5
5 3 4 2 1

)
,

then α2(1) = 1, α3(2) = 1, α3(3) = 3, α3(4) = 4 and α2(5) = 5. This is easily proven using
the pigeonhole principle. Notice that 1 and 5 form a cycle between each other, as α sends 1
to 5 and also send 5 to 1; this is also the case for 2, 3, 4. The permutation α sends 2 to 3, 3
to 4, and 4 to 2. This is the motivation to define cycles.

Definition 2.21. A cycle between n1, n2, . . . , nq is the permutation(
n1 n2 · · · nq

n2 n3 · · · n1

)
.

It is denoted by (n1 n2 · · · nq). The cycle is said to be of length q.

Definition 2.22. A transposition is a cycle of length 2.

The integers n1, n2, . . . , nq need not be in an increasing order. By inspection, in the above
example we have α = (1 5)(2 3 4) = (2 3 4)(1 5). We will show that any permutation can be
written in this manner, as the compositions of cycles.
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Theorem 2.25. Any permutation α in the symmetric group Sn can be written as a
composition of disjoint cycles.

Proof. The proof employs a similar strategy used above. For any integer k ∈ {1, . . . , n}, we
apply α repeatedly, and so we have the sequence k, α(k), α2(k), . . .; some elements of this
sequence must coincide. Let the two such elements be αp(k) = αq(k), with p < q. Thus
αq−p(k) = k. Now there exists a smallest positive number u such that αu(k) = k. The
sequence k, α(k), α2(k), . . . , αu−1(k) must therefore be distinct.

Now we construct the cycle

γk = (k α(k) α2(k) · · · αu−1(k)).

Any two cycles constructed this way are either disjoint or identical, for if y = αd(x) for some
integer d, then γx = γy, and we see that x and y belong to the same cycle. Continue doing
this for all elements of {1, . . . , n}, we will have a collection of cycles {γk1 , γk2 , . . . , γkm}, all
of them are pairwise disjoint.

Now consider the composition γk1γk2 · · · γkm . For any x ∈ {1, . . . , n}, then γkd(x) =
α(x) if x and kd belong to the same cycle; else γkd(x) = x. And so α = γk1γk2 · · · γkm .

The proof above use the idea of constructing the sequence k, αk, α2(k), . . . , αu−1(k) of ele-
ments of a group, which is indeed the orbits. This decomposition is also unique up to the
order of yki , and it is called the standard representation of α.

Let’s try to decompose a permutation using the theorem. Consider

α =

(
1 2 3 4 5 6 7 8
3 5 4 1 8 2 7 6

)
with α ∈ S8. The cycle formed by 1 is γ1 = (134). Continuing this, we have the collection
{(134), (2586), (7)}, and the standard representation of α is (1 3 4)(2 5 8 6)(7). One can drop
the single cycle (7) and so

α = (1 3 4)(2 5 8 6).

Finally, consider a cycle α of length n. Note that αn = ι. Furthermore, for any
positive integer d,

αd = (γk1γk2 · · · γkm)d = γd
k1
γd
k2
· · · γd

km ,

since all cycles commute. It follows that if d is the least common multiple of nk1 , nk2 , . . . , nkm ,
where nki is the length of γki , then αd = ι. The least common multiple is indeed the smallest
positive integer with such property.

7.2 Sign of Permutations

7.3 Conjugacy in Sn and An

7.4 Simple Groups
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Vectors and Matrices

1 Complex Numbers

1.1 Complex logarithm

2 Vectors

2.1 Vector Algebra in R3

This section will review algebra of vectors in R3. They are usually regarded as an
arrow, one with dimension and length. Starting from two points inside the space R3, namely
P (p1, p2, p3) and Q(q1, q2, q3) we may draw a vector from P to Q, and is expressed by

−→
PQ = (q1 − p1, q2 − p2, q3 − p3).

Generally let u = (u1, u2, u3). This vector can also be written as a sum of unit vectors laying
on the axis. Those unit vectors are

i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

And u = u1i+ u2j+ u3k. We can multiply vectors by a scalar, which is a real number, by

µu = (µu1, µu2, µu3).

The usual properties of vectors should be familiar, that is µ(u+ v) = µu+ µv, (µ+ λ)u =
µu+ λu, and (µλ)u = µ(λu).

2.2 Vectors in Rn and Cn

Let us consider vectors in Rn, the natural generalisation of R3.

27
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Definition 3.1. Using the standard basis e1, . . . , en of Rn, if x =
∑

j xjej and y =∑
j yjej, we write

x · y =
n∑

j=1

xjyj, ‖x‖2 = x · x =
n∑

j=1

x2
j ,

and x ⊥ y when x · y = 0.

Note that ‖x‖ = ‖−x‖. The distance ‖x − y‖ between the points x and y is given by the
natural extension of Pythagoras’ theorem, and importantly, satisfies the triangle inequality.

‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖. (3.1)

To prove this assertion, it is sufficient to show that |x · y| ≤ ‖x‖‖y‖, so that we
have ‖x + y‖ ≤ ‖x‖ + ‖y‖, which readily implies the triangle inequality. Thus we seek to
prove

Theorem 3.1 (the Cauchy-Schwarz inequality). For all x, y ∈ Rn,

|x · y| ≤ ‖x‖‖y‖. (3.2)

The equality holds if and only if ‖x‖y = ±‖y‖x, i.e. one vector is a multiple of one
another.

Proof. Let x = (x1, . . . , xn) and y = (y1, . . . , yn). The equation holds true when x = 0 and
when y = 0. So we assume that ‖x‖‖y‖ > 0.

Consider the equation

0 ≤
n∑

j=1

(‖x‖yj − ‖y‖xj)
2 = 2‖x‖‖y‖ (‖x‖‖y‖ − xy) ,

so x · y ≤ ‖x‖‖y‖; similarly, put −x as x and we have −x · y ≤ ‖x‖‖y‖. Therefore |x · y| ≤
‖x‖‖y‖. Equality holds if

∑n
j=1 (‖x‖yj − ‖y‖xj)

2 or
∑n

j=1 (‖x‖yj + ‖y‖xj)
2 is equal to zero,

which implies ‖x‖y = ±‖y‖x.

Now we are sufficiently equipped with the tool to prove the triangle inequality for general
Rn space.

Theorem 3.2 (The triangle inequality for Rn). For all x, y, z in Rn,

‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖. (3.3)
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Proof. Set a = x − y and b = y − z. The inequality is equivalent to ‖a + b‖ ≤ ‖a‖ + ‖b‖,
which we seek to prove. Note that

‖a+ b‖2 = (a+ b) · (a+ b) = ‖a‖2 + ‖b‖2 + 2a · b
≤ ‖a‖2 + ‖b‖2 + 2‖a‖‖b‖ = (‖a‖+ ‖b‖)2 .

Taking square root on both sides we arrive at ‖a+ b‖ ≤ ‖a‖+ ‖b‖.

2.3 Concepts in linear algebra
We shall begin with a concept of a basis.

Definition 3.2. The set of vectors v1, . . . , vn of vectors in a vector space V is called a
basis of V if, for every v in V , there exists unique scalars λj such that

∑n
j=1 λjvj = v.

Note that the scalars must exists, and are unique for any v. The following theorem follows
readily.

Theorem 3.3. For any vector space V , if v1, . . . , vn and w1, . . . wm both form the bases
of V , then n = m.

The above theorem allows us to meaningfully assign dimension to non-trivial vector spaces
V , which is the number of elements in any basis of V , if it is finite. This is called the
dimension of V .

Definition 3.3. Let V be a vector space. We say that V is a finite dimensional vector
space, or dimV is finite, if the basis of V is finite. Then we take dimV as the number
of elements of the basis of V . If V = {0} we put dimV = 0. If the basis of V is infinite,
we say that V is infinite dimensional.

The following definition captures two essential properties of a basis.

Definition 3.4. Let S = {v1, . . . , vk} be a finite set of vectors in V . The set span(S) is
the set of all linear combination of elements of S. If span(S) = V , we say that S spans
V , or S generates V .

Definition 3.5. The set S = {v1, . . . , vk} is linearly independent if, for all scalars λj, µj,∑
j

λjvj =
∑
j

µjvj implies λj = µj for all j.

Otherwise we say that S is linearly dependent.

An equivalence definition of linear independence and be given as follows:
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Definition 3.6. The set S = {v1, . . . , vk} is linearly independent if, whenever we have

λ1v1 + λ2v2 + · · ·+ λkvk = 0,

then λ1 = λ2 = · · · = λk = 0.

Theorem 3.4. The set S forms a basis of V if and only if it spans V and is linearly
independent.

2.4 Suffix notation

2.5 Vector product and triple product

2.6 Solution of linear vector equations

2.7 Applications

3 Matrices

Definition 3.7. An n×m matrix is an array of numbers of the form
a11 a12 . . . a1m
a21 a22 . . . a2m
... ... . . . ...

an1 an2 . . . anm

 .

Sometimes it will be denoted by (aij), where aij is the general element of the matrix, the
index i stands for the row and j for the column of the element.

Definition 3.8. An n× n matrix is called a square matrix.

3.1 Algebra of matrices

3.2 Determinant and trace
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Definition 3.9. The trace of an n×n matrix A, denoted trA is the sum of its diagonal
entries, that is

trA =
n∑

i=1

aii. = a11 + a22 + · · ·+ ann.

Theorem 3.5. It is evident that, for two square matrices A and B with same dimension,

tr(A+B) = trA+ trB.

3.3 Matrix as linear transformation
We start with the definition of linear transformations.

Definition 3.10. A map α : V → W between vector spaces V and W is linear if, for all
scalars λ1, . . . , λn, and all vectors v1, . . . , vn,

α (λ1v1 + · · ·+ λnvn) = λ1α(v1) + · · ·+ λnα(vn).

If α is linear we say that it is a linear transformation, or a linear map, if for all scalars
λ and all vectors u and v, α(λx) = λα(x) and α(x+ y) = α(x) + α(y).

The two definitions are equivalent.

3.4 Simultaneous linear equations

4 Eigenvalues and Eigenvectors
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Chapter 4

Differential Equations

1 Basic Calculus

1.1 Differentiation

Definition 4.1. The derivative of a function f(x) with respect to x, is the rate of change
of f(x) at x, is defined as

df

dx
= lim

h→0

f(x+ h)− f(x)

h
. (4.1)

The function f is differentiable at x if the limit exists. We may write df
dx

= f ′(x). And
more generally, dn

dxnf(x) = f (n)(x) is the n-th derivative of f .

We shall adopt the convention that f ′(x) is the derivative with respect to the argument, or
variable, of the function. For example, f ′(2x) is to be view as a derivative of f with respect
to 2x, that is, f ′(2x) = df

d(2x)
.

1.2 Big O and small o notation

Definition 4.2. We say that f(x) = o(g(x)) as x → x0 if limx→x0

f(x)
g(x)

= 0. That is,
f(x) is much smaller than g(x).

Definition 4.3. We say that f(x) = O(g(x)) as x → x0 if f(x)
g(x)

is bounded as x → x0.
That is, f(x) is as big as g(x).

The definition of O does not requires that limx→x0

f(x)
g(x)

exists; sinx = O(1) as x → ∞ but
limx→∞ sinx does not exists.
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Theorem 4.1. Let f be a function differentiable at x0, then

f(x0 + h) = f(x0) + f ′(x0)h+ o(h) (4.2)

as h → 0.

Proof. From the definition of differentiation and o,

f ′(x0) =
f(x0 + h)− f(x0)

h
− o(h)

h
. (4.3)

The result follows.

1.3 Rules of differentiation

Theorem 4.2 (Chain rule). Let f(x) = F (g(x)), F is differentiable at g(x) and g is
differentiable at x, then

df

dx
=

dF

dg

dg

dx
.

Proof. We have

df

dx
= lim

h→0

F (g(x+ h))− F (g(x))

h

= lim
h→0

F (g(x) + hg′(x) + o(h))− F (g(x))

h
= lim

h→0 den
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2 First-order Linear Differential Equations

2.1 Equations with constant coefficients

2.2 Equations with non-constant coefficients

3 Nonlinear first-order equations

3.1 Separable equations

3.2 Exact equations

4 Higher-order Linear Differential Equations

5 Multivariate Functions
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Chapter 5

Analysis I

A rigorous theory of mathematical analysis must take an axiomatic approach as its
foundation. Thus it is preferable to start from the construction of real numbers, and then
discover their properties, as not to take them for granted. This foundational rigour is,
fortunately, available for us by Dedekind and his model for the real number.

What are the essential properties of R? We have learnt that R is a field, with the
usual addition and multiplication; the usual subtraction and division is also possible.

Secondly, there is a total order on R, that is, if x, y ∈ R then either x ≤ y or y ≤ x,
and only x = y when both condition are satisfied. Furthermore, if x ≤ y and y ≤ z then
x ≤ z. This means R is an ordered field and that is, if x ≤ y then x + z ≤ y + z, and if
w ≥ 0 then xw ≤ yw.

Of course, Q is also an ordered field, but it is not complete. This is the most important
property of R to keep in mind. Let’s start by a notion of an upper bound. If A is a non-empty
subset of R and b ∈ R, then b is an upper bound for A if b ≥ a for all a ∈ A. By saying that
R is complete, this means that, if A is a non-empty set of R with an upper bound, then A
has a least upper bound, or supremum supA. This translates to, for any upper bound b of a
set A ⊂ R, should it exist, we have supA ≤ b.

Another central theme of analysis regards absolute value, that is the function

|x| =


x if x ≥ 0

0 if x = 0

−x if x ≤ 0

. (5.1)

Note that |x− y| = |y − x| and |x| ≥ 0 for all x ∈ R.

Theorem 5.1. For all x, y ∈ R, |x+ y| ≤ |x|+ |y|, with equality when xy ≥ 0.

Proof. Trivial proof by case.
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Theorem 5.2. (Triangle Inequality) For all x, y, z ∈ R, we have

|x− z| ≤ |x− y|+ |y − z|. (5.2)

Proof. Simply substitute x− y and y − z in place of x and y, respectively.

1 Limit and Convergences

Let’s start with sequences.

1.1 Series and sequences in R and C

Definition 5.1. A sequence is an ordered list of number, with a natural number n
corresponding to the nth term in the sequence.

Alternatively, a sequence is a function from N to a particular set, namely R or C.

Definition 5.2. A sequence sn is a null sequence if, to every positive number ϵ, there
corresponds an integer N such that

|sn| < ϵ for all values of n greater than N.

We can adapt the definition to any sequence whose terms approach any number s.

Definition 5.3. A sequence sn is said to tend to the limit s if, given any positive number
ϵ, there is an integer N (depending on ϵ) such that

|sn − s| < ϵ for all n > N.

We then write lim sn = s.

A more clear notation limn→∞ sn = s can be given.
Note. 1. Clearly, lim sn = s if and only if sn − s is a null sequence.

2. The inequality |sn − s| < ϵ is equivalent to the two inequalities

s− ϵ < sn < s+ ϵ.

This is clear that sn is bounded after some index N .
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3. A short notation sn → s stands for lim sn = s. A further symbolism for the above
definition may be given:

sn → s if ϵ > 0; ∃N.|sn − s| < ϵ for all n > N.

If limits exist, they are unique.

Theorem 5.3. If an → s as n → ∞ and an → l as n → ∞, then s = l.

Proof. We will prove this theorem by contradiction. Suppose s 6= l. Let ϵ = |s − l|/3 > 0.
There exists n0 such that |an − s| < ϵ for n ≥ n0, and there exists m0 such that |an − l| < ϵ
for n ≥ m0. Let N = max{n0,m0}. Then if n ≥ N ,

|l − s| ≤ |an − l|+ |an − s| < 2ϵ = 2|l − s|/3,

a contradiction.

We have discussed on upper bound and lower bound of a set, it is time to introduce a notion
of boundedness, and expand it to those of sequences in general.

Definition 5.4. A subset A of R is bounded if it is bounded above and bounded below.
A sequence sn is bounded if the set {sn : n ∈ Z+} is bounded.

Theorem 5.4. If a sequence tends to a limit, then it is bounded.

Proof. Let the sequence an tends to the limit l. We choose an arbitrary ϵ so that for any
n ≥ n0 the difference |an − l| is less than ϵ.

Let ϵ = 1, so that |an − l| < 1 for all n ≥ n0. Choose
M = max{|a1|, |a2|, . . . , |an0 |, |l|+ 1}.

Then for all n ≥ n0 |an| ≤ |an − l|+ |l| < 1 + |l|. Clearly, |an| ≤ M and we are set.

Note that the converse of the theorem might not be true; if a sequence is bounded,
then it might not tends to a limit. Consider the sequence an = cosnπ. It is bounded, but
an does not tend to a limit.

Theorem 5.5. Suppose that an is an increasing sequence of real numbers. If it is
bounded then

an → sup{an : n ∈ Z+}

as n → ∞; otherwise an → +∞.
Similarly, for any decreasing sequence an, if it is bounded, then

an → inf{an : n ∈ Z+};

otherwise an → −∞.
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One sequence worth considering is the sequence an = rn. The convergence of the
sequence depends on the value of r.

1. If r = 1, then an → 1, and if r = 0 then an → 0.

2. If r > 1, then r = 1 + k for some k > 0, so we have

an = (1 + k)n > 1 + kn

by considering the first two terms in the binomial expansion. And so an → +∞.

3. If 0 < r < 1, then r−1 = 1 + l > 1 with l > 0, thus

0 < an =
1

(1 + l)n
<

1

1 + nl
.

As n → ∞, 1/(1 + nl) → 0 and therefore an → 0.

4. If −1 < r < 0, set s = −r, so that 0 < s < 1, it follows that sn → 0 as n → 0, and
therefore an = (−s)n = 0.

5. If r = −1, then an takes the values −1 and 1 alternatively, and so it oscillates finitely.

6. If r < −1, set s = −r, then sn → ∞. And so an = (−s)n takes numerically increasing
values alternating between negative and positive. That is to say an oscillates infinitely.

Another proof of convergence of an = rn when 0 < r < 1 can be given as follows: the
sequence rn is decreasing and bounded (by 0), therefore it tends to inf{rn : n ∈ Z+}, which
is 0.

1.2 Sums, products and quotients
We start with important theorem of sums and products of null sequence.

Theorem 5.6. If sn and tn are null sequences, so is sn + tn.

Theorem 5.7. If sn is a null sequence and tn is a bounded sequence, then sntn is a null
sequence.

Corollary 5.1. If sn is a null sequence and c is a constant, then csn is a null sequence.

We then now extend the results to general sequences.
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Theorem 5.8. If sn → s and tn → t, then

1. sn + tn → s+ t,

2. sntn → st.

Theorem 5.9. If sn → s and tn → t with t 6= 0, then
sn
tn

→ s

t

Theorem 5.10. If sn → s and tn → t and sn ≤ tn for all n, then s ≤ t.

Theorem 5.11. If sn → s and snk
is a subsequence, then snk

→ s.

1.3 Bolzano-Weierstrass theorem

Theorem 5.12. (Bolzano-Weierstrass theorem) Suppose that an is a bounded sequence
of real numbers. Then there exists a subsequence ank

of an which converges.
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1.4 Absolute convergence

1.5 Comparison and ratio test

1.6 Alternating series test

2 Continuity

2.1 Continuity of real and complex function

2.2 The intermediate value theorem

3 Differentiability

3.1 Differentiability of functions from R to R

3.2 Derivative of sums and products

4 Power series

Definition 5.5. An infinite series of the form
∞∑
n=0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + · · · ,

composed of multiples of powers of (z − z0), is called a power series. Both the variable
z, the centre z0, and the coefficients an might be real of complex.

It suffices to consider only when z0 = 0.

There are three possibilities with convergence of a power series.

1. The series converges for all z ∈ C.

2. The series converges only within a finite radius of convergence R, that is, only for
|z| < R.

3. The series converges only for z = 0.

5 Integration

5.1 Integrability of monotonic functions



Chapter 6

Probability

1 Basic concepts

2 Axiomatic approach

3 Discrete random variables

4 Continuous random variables

5 Inequalities and limits

5.1 Markov’s and Chebyshev’s inequality

5.2 Weak law of large numbers

5.3 Convexity and Jensen’s inequality

5.4 AM-GM inequality
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Chapter 7

Vector Calculus

1 Curves in R3

1.1 Parameterised curves

2 Integration in R2 and R3

3 Vector operators

3.1 Directional derivatives

4 Integration theorems

4.1 Divergence theorem

Theorem 7.1 (Divergence theorem). Let u be a continuously differentiable vector field,
defined in a volume V . Let S be the closed surface forming the boundary of V and let
n be the unit outward normal to S. Then˚

V

∇ · u dV =

‹
S

u · n dS.

The theorem is also known as Gauss’s theorem.
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5 Laplace’s equation

6 Cartesian tensors in R3



Part IB
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Chapter 8

Analysis and Topology

1 Uniform convergence and uniform continuity

We first studies the notions of convergence.

Definition 8.1. Suppose (fn)
∞
n=1 is a sequence of real-valued functions, defined on a set

S. Then (fn)
∞
n=1 converges point-wise to f if for each s ∈ S and each ϵ > 0 there exists

n0 ∈ N such that |fn(s)− f(s)| < ϵ for all n ≥ n0.

But point-wise convergence is not adequate. We consider instead uniform convergence, which
the number n0 works for all s.

Definition 8.2. We say that the sequence (fn)
∞
n=1 converges uniformly to f on S if for

each ϵ > 0 there exists n0 ∈ N such that |fn(s)− f(s)| < ϵ for all n ≥ n0 and s ∈ S.

2 Metric spaces

3 Topological spaces

Let’s start with the definition of topological spaces. We take the open set definition
of topological spaces here.
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Definition 8.3. A topological space T = (X, τ) consists of a non-empty set X with a
family τ of subset of X such that.

(T1) X, ∅ ∈ τ ,

(T2) the intersection of any two sets of τ is itself in τ , and

(T3) the union of any collection of sets in τ is in τ .

The family τ is called a topology for X, and the members of τ are called the open set of T .
Elements of X are called points in the space T . We also say ‘U ∈ τ ’ to be ‘U is open in
T’. Later on we shall interchangeably use X and T . For example, the ‘topological space X’,
‘points of X’, etc.

Theorem 8.1. A subset U of a topological space X is open in X if and only if for every
x ∈ U there is an open subset Ux of X such that x ∈ Ux ⊆ U .

Proof. If U is open in X, for each x ∈ U , let Ux = U . Then the conditions hold.
Conversely, if for every x ∈ U there is an open subset Ux of X such that x ∈ Ux ⊆ U .

We shall show that
U =

∪
x∈U

Ux.

Suppose x ∈ U , then x ∈ Ux ⊆
∪

x∈U Ux. Now consider when x ∈
∪

x∈U Ux, then x ∈ Ux0 for
some x0, and we have x ∈ Ux0 ⊆ U from the hypothesis.

Since U is a union of sets open in X, it follows that U is open in X.

3.1 Metric spaces as topological spaces
It is easy to construct a topological space given a metric space, since the definition

of a topological space is, in fact, stemmed from metric spaces. Here we show how.

Example 8.1. Given a metric space (X, d), we can construct a topological space (X, τd),
where τd is exactly the family of all d-open subsets of X.

We call such topological space created from a metric space metrisable. The space
(X, τd) underlies the metric space (X, d) and τd is the topology induced by the metric d

Different metrics can give rise to the same topology.

3.2 Further examples
Example 8.2. Consider the family τ = {∅, X}, for any non-empty set X. It is trivial to see
that τ forms a topology of X, called indiscrete topology.

There is also a topology constructed from all possible subset of X, or more precisely:
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Example 8.3. The family τ consists of all subset of X is a topology. This is called discrete
topology.

Direct verification of the axioms should be rather easy.

Definition 8.4. Given two topologies τ1, τ2 on the same set, we say that τ1 is coarser
than τ2 if τ1 ⊆ τ2. The topology τ2 is finer than τ1.

Example 8.4. The Sierpinski space S consists of two points {0, 1} with the topology
{∅, {1}, {0, 1}}. It is finer than the indiscrete topology {∅, {0, 1}}, but courser than the
discrete topology {∅, {0}, {1}, {0, 1}}.

Let’s see the final example of a topology.

Example 8.5. Let X be a non-empty set. The co-finite topology on X consists of the empty
set and every subset U of X such that X \ U is finite.

Remark. The co-finite topology of a finite set X is the discrete topology.

3.3 Concepts in topological spaces
We introduce the idea of closeness, closure, interior, neighbourhood, etc. borrowed

from those of a metric space.

Definition 8.5. Let (X, τ) be a topological space. A subset V of X is said to be closed
in X if X \ V is open in X.

Theorem 8.2. Let X be a topological space. Then

(C1) X, ∅ are closed in X;

(C2) if V1, V2 are closed in X then V1 ∪ V2 is closed in X; and

(C3) if Vi is closed in X for all i ∈ I then ∩i∈IVi is closed in X.

This is one of the possible definition of a topological space, in terms of closed sets.

4 Connectedness

5 Compactness
We shall define compactness by first introducing the idea of covers.
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Definition 8.6. Suppose X is a set and A ⊆ X. A family {Ui : i ∈ I} of subsets of X
is called a cover for A if

A ⊆
∪
i∈I

Ui.

6 Differentiation from Rm to Rn
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Variational Principles
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Chapter 10

Linear Algebra

1 Vector Spaces

Theorem 10.1. Let V be a vector space which is spanned by a finite set of vectors
β1, β2, . . . , βm. Then any independent set of vectors in V is finite and contains no more
than m elements.

1.1 Linear independence

2 Linear maps

3 Determinant

4 Eigenvalues and Eigenvectors

5 Duals

6 Bilinear Forms

7 Inner Product Spaces
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Chapter 11

Groups, Rings and Modules

1 Groups

We have gone into details of groups in Part IA.

1.1 Basics concepts

1.2 Normal subgroups

1.3 Sylow subgroups and Sylow theorems

2 Rings

2.1 Definition

Rings are abstraction of systems with addition and multiplication. The prototype of
rings are the set Z of integers.

We define the general notion of ring in a similar way. We say that a set R with two
operations, addition and multiplication, denoted x+ y and x · y, respectively.
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Definition 11.1. A set R, together with two binary operations + and ·, is a ring if it
satisfies all of the following properties

(A1) a, b ∈ R implies a+ b ∈ R,

(A2) a+ b = b+ a for all a, b ∈ R,

(A3) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R,

(A4) there exists an element, denoted 0 such that a+ 0 = a for all a ∈ R,

(A5) for each a ∈ R, there exists some element b ∈ R such that a+ b = 0,

(M1) a, b ∈ R implies that a · b ∈ R

(M2) a · (b · c) = (a · b) · c for all a, b, c ∈ R

(D) a · (b+ c) = a · b+ aċ and (b+ c) · a = b · a+ c · a for a, b, c ∈ R

We write x · y as xy for comprehensiveness. There is another formulation of the definition
of a ring.

Definition 11.2. A set R is a ring if the following properties are satisfied:

1. R forms an abelian group under addition.

2. R forms a monoid under multiplication.

3. The distributive laws hold true.

Note that both definition requires multiplication to be associative. Of course, non-associative
ring exists, but we shall not confer with them now.

Furthermore, even if our prototype is Z, there are few properties of Z missing from
the definition. For example, we do not impose that there exists an element 1 ∈ R so that
a · 1 = 1 · a = a for every a ∈ R. Such ring is called ring with unit.

You might see that elements of a ring do not need to commute under multiplication.
But for such special occasion, i.e. a · b = b · a for a, b ∈ R, they are called commutative ring.

Lastly, it is not true in general that, if ab = 0 then a = 0 or b = 0. The ring with the
above property is called a domain.

Definition 11.3. A commutative ring R is an integral domain if ab = 0 implies a = 0
or b = 0.

Definition 11.4. A ring R is called a division ring if for every a 6== 0 there is an
element b ∈ R such that ab = ba = 1. Later we shall denote b by a−1.
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Definition 11.5. A ring R is said to be a field if it is a commutative division ring.

Direct verification should show that Q,R and C are fields.

2.2 Ideals

2.3 Fields

2.4 Factorisation in rings

2.5 Rings Z[a] of algebraic integers

3 Modules

3.1 Definition

3.2 Submodules

3.3 Equivalence of matrices

3.4 Finitely generated modules over Euclidean domains
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Chapter 12

Complex Analysis

1 Analytic Functions

1.1 Complex differentiation
We first start with the basic definition of limit for complex functions.

Definition 12.1. The function f is said to have the limit A as x tends to a,

lim
x→a

f(x) = A,

if and only if the following is true:
For every ϵ > 0 there exists a real number δ > 0 with the property that |f(x)−

A| < ϵ for all values of X such that |x− a| < δ and x 6= a.

Note that the definition is the same to those of limit of a real function. This is possible
since the absolute function admits both real and complex numbers. The well-known results
concerning the limit of a sum, a product and a quotient of limits is preserved.

Note that we also have the following properties:

1. limx→a f(x) = A.

2. limx→a<f(x) = <A.

3. limx→a=f(x) = =A.

Definition 12.2. The function f is said to be continuous if limx→a f(x) = f(a).
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Definition 12.3. A complex-valued function f defined on an open subset G of C is
differentiable at z ∈ G if

lim
h→0

f(z + h)− f(z)

h

exists. When the limit does exist it is denoted by f ′(z).

Let us consider when f is a real function, that is f(z) is real for all value of z.

Theorem 12.1. A real function of a complex variable has the derivative zero, or else
does not exists.

Proof. Suppose the derivative f ′(z) exists. Then the quotient

f(z + h)− f(z)

h

is real if h is real; and if h = ia is purely imaginary, then

f(z + ia)− f(z)

ia

is imaginary. It follows that f ′(z) = 0 for all z in the domain. Thus a real function of a
complex variable must either has the derivative zero, else the derivative does not exist.

1.2 Conformal mappings

2 Contour Integration and Cauchy’s theorem

2.1 Maximum modulus theorem

3 Expansions and singularities

4 The residue theorem

Theorem 12.2 (Rouché’s theorem). Let f and g be holomorphic inside and on a contour
γ and suppose that |f(z)| > |g(z)| on γ∗. Then f and f + g have the same number of
zeros inside γ.

4.1 Open mapping theorem
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Complex Methods

1 Analytic Functions

2 Contour Integration and Cauchy’s Theorem

3 Residue Calculus

4 Fourier and Laplace Transforms
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Chapter 14

Geometry

1 Surfaces
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Chapter 15

Methods

1 Self-adjoint ODEs

2 PDEs on bounded domains: separation of variables

3 Inhomogeneous ODEs: Green’s functions

4 Fourier transforms

5 PDEs on unbounded domains
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Part II
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Chapter 16

Number Theory

1 Basics
Most fundamentals are covered in part IA.

2 Chinese Remainder Theorem

3 Law of quadratic reciprocity

4 Binary quadratic forms

5 Distribution of the primes

6 Continued fractions and Pell’s equation

7 Primality testing

8 Factorisation
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Chapter 17

Topics in Analysis
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Chapter 18

Coding and Cryptography
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Chapter 19

Automata and Formal Languages

1 Register machines

2 Regular languages and finite-state automata

3 Pushdown automata and context-free languages
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Chapter 20

Logic and Set Theory

1 Ordinals and Cardinals

1.1 Well-orderings and order-types

2 Posets and Zorn’s Lemma

3 Propositional Logic

3.1 Deduction and completeness theorem

4 Predicate Logic

4.1 Löwenheim-Skolem theorems

5 Set Theory

6 Consistency
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Chapter 21

Graph Theory

1 Introduction

2 Connectivity and matchings

3 Extremal graph theory

4 Eigenvalue methods

5 Graph colouring

6 Ramsey theory

7 Probabilistic methods
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Chapter 22

Galois Theory

1 Fields extensions

2 Separability
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Chapter 23

Representation Theory

1 Representations of Finite Groups

1.1 Representations on vector spaces

2 Character Theory

3 Arithmetic Properties of Characters

4 Tensor Products

5 Representations of S1 and SU2

6 Further Worked Examples
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Chapter 24

Number Fields

1 Algebraic Number Fields

2 Ideals

3 Units

4 Ideal classes

5 Dedekind’s theorem on the factorisation of primes
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Chapter 25

Algebraic Topology

1 The Fundamental Group

2 Covering Spaces

3 The Seifert-Van Kampen Theorem

π1(X, x1) π1(X, x0)

π1(Y, f(x1)) π1(Y, f(x0))

βh

f∗ f∗

βfh

4 Simplicial Complexes

5 Homology

6 Homology Calculations
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Chapter 26

Linear Analysis
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Chapter 27

Analysis of Functions

1 Lebesgue integration theory
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Chapter 28

Riemann Surfaces

φ
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96 Riemann Surfaces



Chapter 29

Algebraic Geometry
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98 Algebraic Geometry



Chapter 30

Differential Geometry
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100 Differential Geometry



Chapter 31

Probability and Measure
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Part III
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Chapter 32

Topics in Algebra

Examples, tensor products. Ideal theory for commutative Noetherian algebras, lo-
calisations. Artinian algebras (commutative and non-commutative), Artin-Wedderburn the-
orem. Integral dependence. Dimension theory. Filtrations and associated graded alge-
bras. Injective and Projective modules; Ext and Tor. Derivations and differential operators.
Hochschild (co-)homology.
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Chapter 33

Topics in Set Theory

1 Model theory of set theory

1.1 Models of set theory

1.2 Transitive models of set theory

1.3 Inaccessible cardinals

1.4 Absoluteness

1.5 Simple independence results

1.6 Reflection principles

2 Inner models

2.1 Definability

2.2 Ordinal definability

2.3 Constructibility

3 Forcing

3.1 Generic extensions
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Chapter 34

Category Theory

1 Categories, functors and natural transformations

2 Locally small categories

2.1 Yoneda lemma

3 Adjunctions

4 Limits

5 Monads

6 Filtered colimits

7 Regular categories

8 Abelian categories

9 Monoidal categories
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Chapter 35

Model Theory
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Chapter 36

Modular Forms and L-Functions
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Chapter 37

Algebraic Number Theory
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Chapter 38

Elliptic Curves

117



118 Elliptic Curves



Chapter 39

Analytic Number Theory
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